Transient Speed Vibration Analysis
Insights into Machinery Behavior
07-Dec-2007

By:
Stan Bognatz, P.E.
President & Principal Engr.
srb@mbesi.com

Rotating Machinery Diagnostics & Instrumentation Solutions for... "Maintenance That Matters"
www.mbesi.com

Ok, analysts....

- What is wrong with this turbine?

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80000 CPM 800 Lines Hanning</td>
</tr>
<tr>
<td>Trib Slip End 18Y 45L 200.0 mVEU</td>
</tr>
<tr>
<td>Cursor: 1. Orders 2.350 m</td>
</tr>
</tbody>
</table>

© 2007 M&B Engineered Solutions, Inc.
www.mbesi.com
Possibilities

- What causes a predominant 1X Vibration?
 - Unbalance
 - Misalignment
 - Rotor Resonance
 - Structural Resonance
 - Rub
 - Coupling Lock Up
 - Oversize bearing
 - Bowed Shaft
 - High 1X Slow Roll / Runout
 - Cracked Shaft

Transient Vibration Analysis

- Transient Speed Vibration Analysis
- Acquisition & analysis of data taken during startup and shut down
- Provides significant insight into the rotor and structural dynamics that cannot be had with only steady state analysis
- This information includes:
 - Unbalance “Heavy Spot” Locations
 - Rotor Mode Shapes
 - Shaft Centerline Movement / Alignment
 - Bearing Wear
 - Shaft Runout
 - Critical Speeds / Resonances
 - Rotor Stability
 - Bearing Wear
 - Foundation Deterioration, and others
Transient Data Sampling

- This is not ‘PdM’ data acquisition
- Multiple channels (8 – 30+)
- All channels sampled simultaneously & synchronously
- All data referenced to a once-per-revolution speed / tach signal

Instrumentation

- What are some instrumentation requirements for transient data?
- Here’s a “short” list of desired abilities for transient data acquisition:
 - Minimum channel count of 8, with 16 or more channels preferred
 - Synchronous sampling of all channels
 - 2 or more tach channels
 - Accurately sample data at low rotor speeds (< 100 rpm)
 - Measures DC Gap Voltages up to -24 Vdc
 - Produce DC-coupled data plots (for shaft centerline & thrust data)
 - Provide IEPE / accelerometer power
 - Electronically remove low speed shaft runout from at-speed data
 - Display bearing clearances; plot shaft movement with available clearance
 - Specify RPM ranges for sampling, and RPM sampling interval
 - Produce bode, polar, shaft centerline, and cascade plots for data analysis
 - Tracking filter provides 1X and other programmable vector variables
The Need for (Rotor) Speed

- A key (the key) component to successful transient analysis is a reliable once-per-revolution tachometer signal.
- This signal provides a triggering pulse for the instrument tracking filter.
- It lets us establish a rotor phase angle reference system.
- For machines without a permanent vibration monitoring system, a portable laser tachometer can be used to provide a TTL pulse.
 - We have had excellent results with Monarch Instrument's PLT-200.
 - Observes optically reflective tape attached to the shaft.
 - Senses optical tape 25' away feet at angles of ±70°.
 - Clean TTL pulse output.
 - Very reliable trigger.
 - Use with ZonicBook/618E dedicated Tach inputs.

Machines with permanent vibration monitoring systems often use a proximity probe to observe a notch or keyway in the shaft.
- This provides a DC voltage pulse output.
- Signal must used as an analog tach input on the ZonicBook/618.
- Some signals create triggering problems due to signal quality:
 - Overshoot / ripple – causes multiple triggers per revolution.
 - Overall signal contains an AC vibration signal – causes multiple triggers.
 - The bottom of each pulse is not at the same voltage level – causes misses samples.
The Need for (Rotor) Speed

- If your instrumentation does not properly trigger using Auto tach:
 - Try manually adjusting the trigger voltage level to a voltage that only allows the instrument to that voltage level and corresponding slope (+ or -) once per revolution
 - A trigger setpoint of -2.0 to -3.0 Vdc would work nicely here

If reliable triggering cannot be established, a signal conditioner such as Bently Nevada’s TK-15 Keyphasor Conditioner can be used to modify the signal.

- It can simultaneously ‘clip’ the top and bottom portions by applying bias voltages, thus removing any ripple / overshoot from the pulse, and producing a more TTL-like pulse
- The signal can also be amplified
Transducer Selection vs. Machine Design

- Journal & Tilt Pad Bearings:
 - Machines with heavy /rigid casings, and 'light' rotors
 - Most steam turbines, barrel compressors, gearboxes, large pumps, etc.
 - Proximity Probes in X-Y Configuration at each bearing
 - Provide direct measurement of shaft-relative vibration
 - Seismic probes (accel) yield attenuated signals & phase lag
 - Machines with lower case-to-rotor mass ratios or flexible supports
 - Gas turbines, LP turbine pedestals, air machines, fans, pumps, motors
 - Use Proximity & Seismic when possible
 - Flexible supports provide comparable
 - Shaft & casing vibration
 - Both are important

- Rolling-Element Bearings:
 - Accelerometers
 - True Vertical & Horizontal Planes
 - Aligns probes close to major & minor stiffness axes

Configuration & Sampling Guidelines

- \(\Delta \text{RPM} \) & \(\Delta \text{Time} \) Sampling Intervals
 - Generally sample at \(\Delta \text{RPM} \) of 5 to 10 rpm for most machinery
 - Produces high quality data plots
 - Keeps database sizes reasonable
 - Need to consider the total speed range over which data must be sampled
 - Will speed oscillate during the startup?
 - Turbine startups; VFD drives
 - \(\Delta \text{Time} \) sampling during startup provides data during heat soak / idle periods
 - 20 to 30 seconds between samples, unless process conditions are changing rapidly
 - Try to estimate total database size required and ensure system will not truncate database during sampling
Configuration & Sampling Guidelines

- Fast Ramp Rates – AC Motors
 - Induction motor startup will be very fast, accelerating quickly and smoothly from zero to full speed.
 - Startup lasts only 10 – 40 seconds after the breaker is closed.
 - Can data acquisition keep pace with the ramp rate?
- 3,600 rpm motor; 40 second startup time
 - $3600 / 40 = 90$ rpm per second
 - At ΔRPM = 5, we would be trying to capture = 16 samples per second
- What can we expect from our data?
 - Examine data acquisition settings:
 - Fmax
 - Lines of resolution
 - ZonicBook/618E: 2,000 Hz Fmax; 1600 LOR
 - 1 sample = 0.8 seconds = 72 rpm change between start and end of sample
 - Data smearing
 - Fmax = 1,000 Hz; 200 LOR
 - 1 sample = 0.2 seconds = 18 rpm
 - Set ΔRPM at 20 - 30

Transient Data Plot Types

- Bode
- Polar
- Shaft Centerline
- Waterfall / Cascade

Before discussing these data plots, we need to review the importance of slow roll compensating our 1X-filtered shaft vibration data to remove the effects of runout.
Slow Roll Compensation

- Slow-roll: mechanical and electrical shaft runout in the target area of a proximity probe
 - Defects that create a non-dynamic ‘false’ vibration signal
 - Adds vectorally to the true dynamic vibration at any speed
 - Prox probe cannot distinguish between runout and true vibration
- We need to electronically remove slow roll for accurate results
- For most turbo-machinery:
 - Sample vibration at low speeds, typically below 300 rpm
 - Reasonably sure there will be little dynamic shaft motion
 - The measured signal will contain the runout of the probe target area
- Most data acquisition systems allow runout signal to be stored and then digitally subtract it from any at-speed vibration
- The differences can be dramatic.

Time-wavform plot
- Uncompensated
 - Dominant 1X signal, some 2X
- Compensated
 - Significant 2X
- Different conclusions?
Slow Roll Compensation

- Selecting the Correct Slow Roll Speed Range on a Bode Plot
 - Look for low speed region with constant amplitude and phase
 - This ensures we are not including any ‘true’ dynamic activity
- Effect on Bode plot
 - Cannot predict how the bode plot will look like after compensation
 - Amplitude should be near zero at the speed the slow roll was sampled

Slow Roll Compensation

- Polar Plot Compensation
 - Slow roll vector merely moves the entire plot
 - “Shape” of the data (polar loops) not changed
 - Can be done visually
 - Properly compensated plot will begin at zero amplitude
Transient Data – Bode Plots

- Bode plots typically show the 1X vector response in X-Y format
 - Filtered Amplitude
 - Phase Lag Angle
 - Rotor Speed

Bode Plots

- They help provide the following information:
 - Slow roll speed range & slow roll vector values
 - The location of the “High Spot”, i.e., the rotor’s vibration response
 - The location of the “Heavy Spot”, i.e., the physical location of a residual unbalance on the rotor
 - Amplitude, phase & frequency of rotor and structural resonances
 - The presence of ‘split’ resonances
 - Amplification Factor, Damping Ratio & Separation Margin for a resonance
Bode Plots

- Resonance information
 - Amplitude – peaks at resonance
 - Phase – must show a 90 degree shift from low speed
 - Starting point can be difficult to determine if other modes are present
 - Frequency (rpm)

- Heavy Spot
 - ~90°
 - Resonance 3.39 mils at 1,810 rpm

Bode Plots

- The “High Spot” = the measured 1X vibration response
- Changes as a function of speed
- The “Heavy Spot” = physical location residual rotor unbalance
 - Hopefully doesn’t change
 - Relationship to High Spot depends on whether the rotor operates below, near, or above its resonance

High Spot

Heavy Spot

~90°
Bode Plots

- Amplification Factor (AF) a measure of damping for any mode
- API Half-Power Bandwidth Method:
 - Multiply (peak amplitude x 0.707)
 - Determine corresponding speeds N1 & N2 == half-power bandwidth
 - AF = resonance frequency divided by half-power bandwidth

Amplification Factor API guidelines:
- < 2.5 = Critically damped; essentially no resonance seen
- < 5.0 = very good
- < 8.0 = still acceptable
- 8 – 10 = marginal
- > 10 = poorly damped
Bode Plots

- **Separation Margin - API guidelines:**
 - AF < 2.5: critically damped; no SM required.
 - AF = 2.5 - 3.55: SM of 15% above MCS & 5% below MOS
 - AF > 3.55 & resonance peak < MOS:
 - SM (%MOS) = 100 - [84 + (6/[AF - 3])]
 - AF > 3.55 & resonance peak > trip speed:
 - SM (%MCS) = [126 - (6/[AF - 3])] - 100

Polar Plots

- Polar plots (Nyquist diagrams) present the same information as bode plots, graphing amplitude, phase, and frequency
- Data is plotted in polar (circular) coordinates
- Direction of rotation
Polar Plots

- Key advantages over bode plots:
 - Easier data interpretation - resonances appears as loops
 - Plot is oriented to the vibration probe & referenced to machine casing
 - Slow roll compensation is easily performed, even visually
 - Incorrect compensation is easily identified
 - The High Spot and Heavy Spot have immediate physical meaning, being directly transferable from the plot to the machine.
 - We can easily identify the 1st and 2nd rotor modes and determine the ideal locations / planes for balance weights
 - Structural resonances are easy to identify
 - Speed normally increases opposite the direction of rotation, providing precessional information

- Resonances (rotor & structural) appear as loops
 - Same amplitude peak and 90 degree phase change as bode plot
 - Loop is easier to identify than bode plot activity
 - Structural resonances appear as small inner loops
Polar Plots

- Heavy Spot, High Spot, and the “Balancing-T”
 - Heavy Spot for any resonance located in the direction the polar loop starts
 - Heavy Spot should be 90 degrees with rotation from the resonance peak
 - Phase angle well above resonance should approach 180 from Heavy Spot, and be 90 degrees against rotation from the resonance peak

Polar Plots

- Heavy Spot, High Spot, and the “Balancing-T”
 - The Low Speed, Resonance, and High Speed data should all lead to essentially the same balance weight location.
Why Do Resonances Occur?

- Unbalance creates a CG that is not coincident with the geometric center
- At low speeds, shaft rotation occurs around the geometric center
- As speed increases, the rotor seeks to "self balance", with the center of rotation migrating from the geometric center toward the mass center
- The ‘self-balancing’ process is what occurs as we pass through resonance
- At the resonance peak, rotation is centered half-way between the geometric and mass centers, resulting in maximum vibration

Resonances & Mode Shapes

- Rotor may have more than one resonance depending on operating speed and mass distribution
- Each resonance has an associated mode shape. For symmetric rotors:
 - 1st Mode is in-phase from end to end
 - Maximum deflection at rotor center
 - 2nd mode out-of-phase end-to-end
 - Maximum deflection at 1/3 points
- ‘Single disks’ such as 1-stage fans and pumps will have only 1 rotor mode (if they operate fast enough)
- Multi-disk (compressors, turbines, some pump) or distributed mass rotors (motors, generators) may have more than 2 modes
- Do not confuse rotor mode shapes with structural mode shapes
Typical 1st and 2nd mode responses
- 1st mode at 2,730 rpm – in-phase across the rotor
- 2nd mode at 7,420 rpm – out-of-phase across the rotor
- 2nd mode must be compensated to remove residual 1st mode effects if present

Polar Plots

1st Mode balance solution – the classic “Static” Balance
- Balance weights on both ends of rotor in same angular locations
- We can balance the 1st mode without affecting the 2nd mode
- The static balance weight pair will cancel each other out during the 2nd mode, having no effect on 2nd mode vibration
Polar Plots

- 2nd Mode balance solution – the “Couple” Balance
 - Balance weights on both ends of rotor in opposite angular locations
 - We can balance the 2nd mode without affecting the 1st mode
 - The couple balance weight pair at out of phase during the 1st mode, canceling each other out
 - 2nd modes must be separately compensated for proper analysis

![Polar Plots Diagram]

Shaft Centerline Position

- Shaft centerline plot shows the average movement of a shaft within the bearing
 - Plots DC gap voltage changes from X-Y proximity probes
 - Only applies to proximity probes
 - Plots should be made in relation to the available diametral bearing clearance
 - We must also assume a reference position (typically the bottom of the bearing for horizontal machinery)
Shaft Centerline Analysis

- Used Qualitatively
 - Look at motion paths & final positions
 - Shows misalignment and preloads across the machine
- Used Quantitatively
 - Need accurate bearing clearance data!
 - Measure Bearing Wear
 - Eccentricity Ratio
 - Shaft Attitude Angle

Eccentricity Ratio

- Any forcing function placing a lateral (radial) preload on the rotor can result in a change in shaft centerline position.
- Preloads can result from:
 - Misalignment Thermal growth
 - Casing Deflection
 - Pipe Strain
 - Rotor rubbing
 - Pumping
 - Gravity
- Misalignment from Thermal Growth / Deflection is the main cause of excessive lateral preloading!
- We use Eccentricity Ratio as the key measure of the shaft’s response to lateral preloads
Eccentricity Ratio

- Eccentricity is the ratio between the distance from the shaft center to the bearing center, divided by the radial bearing clearance.
- Usually abbreviated as ‘e’ or ‘ER’.
- Example 1:
 - Given: 15 mils radial bearing clearance.
 - Shaft centerline data shows the shaft operating 3 mils from bearing center.
 - ER = 3 / 15 = 0.2 → running ‘high’ in the bearing.
- Example 2:
 - Shaft is operating 9 mils from the bearing center.
 - ER = 9 / 15 = 0.6 → typical.
 - If the shaft is centered in the bearing, what is ‘e’?
 - ER = 0 / 15 = 0.
 - If it is against the bearing wall?
 - ER = 15 / 15 = 1.

Average vs. Dynamic Eccentricity Ratio

- The previous slides showed ‘Average’ ER. This is the shaft position obtained when we only consider the DC Gap Voltage data.
- If we also consider the shaft vibration at any given average position, we have the Dynamic Eccentricity Ratio.
- For example, given 15 mils radial bearing clearance:
 - If shaft centerline data shows the shaft 9 mils from bearing center, Average ER = 9 / 15 = 0.6.
 - Given 6 mils pk-pk of 1X shaft vibration using 200 mV/mil probes, the dynamic shaft motion varies +/- 3 mils from the average position.
 - Dynamic ER = Avg ER +/- [(peak-to-peak vibration / 2) / radial clearance].
 - For our data: Dynamic ER = 0.6 +/- [(6 / 2) / 15] = 0.6 +/- 0.2.
 - So the Dynamic ER varies from 0.4 to 0.8 with each shaft rotation.
 - At 0.8 we see the shaft is in close proximity to the bearing wall. We might want to reduce the vibration and/or modify the alignment to reduce babbitt stress.
Transient Vibration Analysis
Insights Into Machinery Behavior

By: Stanley R. Bognatz, P.E.
75 Laurel Street, Carbondale, PA 18407
Tel. (570) 282-4947 email: srb@mbesi.com

Stiffness & Damping vs. Eccentricity

- The radial stiffness and damping of the lubricating fluid within a bearing are functions of eccentricity ratio.
- Increased eccentricity results in non-linear increases of stiffness and damping.
- What effect does this have on our resonance? AF?
 - Observed frequency will increase
 - Observed AF will decrease
- Practically speaking: eccentricity ratio and shaft position should be an integral part of the transient vibration analysis process.

Waterfall & Cascade Plots

- Waterfall and cascade plots are three-dimensional graphs of spectra at various machine speeds and times. They allow us to see the entire frequency content from a location as a function of speed.
Orders of running speed (1X, 2X, 3X, etc.) form near-diagonal lines in the plot.

Horizontal relationships can be analyzed for resonance, looseness, rubs, instability, etc.

Vertical relationships onset and progress of resonant related activity, and any constant-frequency vibration that may be present.
Waterfall & Cascade Plots

- Vertical relationships may be due to:
 - Adjacent machinery – check their speeds against your data
 - Ground faults or electrical noise in your instrumentation – the peaks will line up vertically at 60 Hz (3600 cpm)
 - Structural resonances will get easily excited by orders of running speed as machine speed increases or decreases
 - Oil Whirl: look for subsynchronous vibration at 0.4X – 0.48X that tracks running speed
 - Oil Whip: look for subsynchronous vibration in the at a frequency equal to the rotor’s 1st lateral balance resonance
 - Anisotropic shaft stiffness due to cracking or by design – look for excitation of the 2X order line at ½ the balance resonance

Conclusion

This presentation was compiled from the author’s paper, “Transient Vibration Analysis, Insights into Machinery Behavior,” presented 07-Dec-2007 at the Vibration Institute’s Piedmont Chapter meeting in Halifax, NC.

For a copy of that paper, please contact the author:

Stanley R. Bognatz, P.E.
President & Principal Engineer
M&B Engineered Solutions, Inc.
75 Laurel Street
Carbondale, PA 18407
Tel. (570) 282-4947
Cell (570) 575-9252
Email: srb@mbesi.com
Thank You – Any Questions?